KAMPALA'S PLAUSIBLE URBAN FLOODING FUTURES: BUILDING INSIGHTS THROUGH INTEGRATED COLLABORATIVE MODELING

RICHARD SLIUZAS
Floods in Kampala: all citizens are stakeholders
Kampala Capital City Authority and detailed study area
Methodology

Urban Growth

- Topographic drains, soil data & images
- Urban growth scenario models
- Land cover (trend, high growth)

Flood Modelling

- Land cover (current)
- Rainfall DEM & soil data
- SuDS Options 1..n
- Runoff & flood Model (openLISEM)

Scenarios and stakeholder discourse

- GIS spatial analysis
- Current Flood Levels
- Future Flood Levels
- Flood Levels SuDS
- Indicators & Impact Evaluation
SOME IMPORTANT ISSUES IN KAMPALA

- Complexity:
 - Institutional (multi-actor, overlapping mandates, resource constraints)
 - Substantive (natural and built environments)

- (Spatial) data issues:
 - Spatial-temporal coverage
 - Completeness
 - Accuracy
 - Gaps: soils, rainfall
 - Drainage Master Plan 2002 outdated
Kampala Rainfall data: filling the gaps
SOIL PROPERTY DETERMINATION AND MAPPING
SOURCE: ROSSITER.

Landform segments:
- 0
- plateau
- lower slope (glacis)
- swamp
- swamp margin
- upper slope
- shoulder

Kilometers

UNIVERSITY OF TWENTE.
Scenario 1:10 year with improved primary drain
(snapshot of model run showing flooded area after 3 hours rainfall)
Set of scenarios developed and discussed with stakeholders.

<table>
<thead>
<tr>
<th>Drainage and planning options</th>
<th>Development Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current state</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline - unimproved drainage and current state of development</td>
<td>Scenario 0 Baseline</td>
</tr>
<tr>
<td>Primary - improved primary drain clean secondary drains</td>
<td>Scenario 1 Primary</td>
</tr>
<tr>
<td>Grass - secondary drains are grassed waterways</td>
<td>Scenario 2a Grass</td>
</tr>
<tr>
<td>Zone – remove buildings from flood zone replace with grass.</td>
<td>Scenario 2b Zone</td>
</tr>
<tr>
<td>House – 15,000 house owners increase grassed areas to improve water infiltration on their plots.</td>
<td>Scenario 6b Trend-House</td>
</tr>
</tbody>
</table>
SPATIAL VISUALIZATION AND INDICATORS

KDMP improvement
STAKEHOLDER ENGAGEMENT CRITICAL
CONCLUSIONS

- Better (spatial) information is available, relationships are more explicitly identified through calibration & validation
- Scenario approach allows insights into possible futures to be obtained – options for intervention can be modelled and evaluated.
- Ability to display dynamics of flooding to stakeholders has added a new dimension to stakeholder discussions.
- Need for iterative approach – new knowledge requires modelling updates
- Already improved solid waste management has been taken up by local and city government actors to reduce flooding in Bwaise.
- Need to reorient the basis for urban planning and design and engage key land owners, developers and other agents
THANKS FOR YOUR ATTENTION

Acknowledgement for contributions made to this work by:

ITC Staff and MSc students:
Victor Jetten, Joannes Flacke, David Rossiter, Gezehagn Fura,
Aidan Mhonda and Jigme Chogyal
Shuaib Lwasa and John Wasige, Makerere University
Georg Petersen, Hydroc Consult, Germany.
Staff of KCCA and the residents of Kawempe, Kampala.

UN-Habitat
For a Better Urban Future

UNIVERSITY OF TWENTE.